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Several nesting techniques for the prime factor FFT algorithm are examined. These include 
the full nesting strategy of Winograd’s algorithm, which gives a very low multiplication count; 
a split nesting technique, which requires the same number of multiplications as Winograd’s 
FFT, but fewer additions; and a partial nesting technique, which further reduces the addition 
count at the cost of some extra multiplications and requires the lowest total number of 
floating-point operations. Applications to large multidimensional transforms, as well as to 
I-dimensional transforms, are discussed. On large scientific computers where the multiplica- 
tions can be overlapped with the additions, the prime factor algorithm without nesting 
remains the fastest and is the easiest to implement, (0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Since its introduction in 1965 by Cooley and Tukey [a], the fast Fourier trans- 
form (FFT) algorithm has become an indispensable tool of computational physics. 
In previous papers, the author has presented a unified derivation of the 
Cooley-Tukey family of algorithms [lo], applications to real/half-complex trans- 
forms [12], and implementations on vector computers [9, 131. 

Meanwhile, there have been interesting developments in another direction. Based 
on the prime factor FFT algorithm due to Good [S], Winograd [18] showed that 
for certain values of the transform length N the discrete Fourier transform (DFT) 
could be computed with many fewer multiplications than required by the 
Cooley-Tukey algorithm. The key idea of Winograd’s algorithm is a nesting 
strategy. This represented a breakthrough from the point of view of computational 
complexity theory and has led to numerous applications in fields such as real-time 
signal processing using special-purpose hardware, where the number of multiplica- 
tions is the dominant factor in the overall cost of computing the transform. 

However, Winograd’s algorithm has had much less impact in large-scale scientific 
computing. Several practical reasons may be invoked: a lack of suitable readily 
available software, the fact that descriptions of the algorithm are often couched in 
unfamiliar language, and the apparently complicated programming required. 
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Moreover, Kolba and Parks [7] showed that, on machines where the cost of a 
floating-point addition is a significant fraction of that for a floating-point multi- 
plication, it might be more efficient to use instead a form of Good’s prime factor 
algorithm. The algorithm suggested by Kolba and Parks did, however, make use of 
Winograd’s “small-n DFT modules.” Temperton [ 111 pointed out that the analysis 
of Kolba and Parks applied with even greater force on machines such as the Cray-1 
and Cyber 205, where the multiplications in the various FFT algorithms could be 
overlapped with the additions and were thus effectively free of charge. In [ll] it 
was also shown that Winograd’s algorithm would in fact be slower than the 
Cooley-Tukey algorithm on the Cray-1, since the computation time would be 
dominated by data transfers between central memory and vector registers. An alter- 
native to the procedure of Kolba and Parks was proposed in [ 111, again based on 
Good’s prime factor algorithm but using “minimum-add” small-n DFT modules in 
place of Winograd’s. However, it was suggested that any gain over the 
Cooley-Tukey algorithm would be very modest. 

The conclusions reached in [ 111 later turned out to be rather too pessimistic. 
Taking into account the work of Burrus and Eschenbacher [ 11, as relined in [ 143, 
the prime factor FFT algorithm was shown to provide significant gains on the 
Cray-1 [lS] and Cray X-MP [17]. 

In this paper, we reconsider Winograd’s algorithm in the light of these develop- 
ments. We also consider alternative nesting strategies; bearing in mind the analysis 
presented in [ll], the aim will be to reduce the number of additions rather than 
the number of multiplications. It turns out that the prime factor algorithm (without 
nesting) is still likely to be faster than Winograd’s on machines such as the Cray-1, 
Cyber 205, or Cray X-MP; but several interesting new results, which may have 
more impact on other computers, are obtained along the way. These include the 
following: 

(1) A variant of Winograd’s nesting strategy systematically reduces the 
number of additions required, while maintaining the same very low multiplication 
count. Moreover, this variant permits a self-sorting “almost-in-place” implementa- 
tion, in contrast to Winograd’s formulation which requires a considerable amount 
of work space. 

(2) An alternative nesting strategy further reduces the addition count at the 
expense of some extra multiplications and allows a more straightforward self- 
sorting in-place implementation. This algorithm (“partial nesting”) leads to the 
smallest total operation count. 

(3) For certain values of the transform length N, algorithms exist which 
require even fewer additions than the prime factor algorithm using “minimum-add” 
DFT modules. 

These results are derived using straightforward matrix algebra; some readers may 
be relieved to know that no use whatsoever is made, for example, of the theory of 
irreducible cyclotomic polynomials [S]. 
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The organization of this paper is as follows. In Section 2 we establish notation 
and briefly compare the family of “conventional” FFT algorithms, based on that of 
Cooley and Tukey, with the prime factor algorithm. Section 3 derives Winograd’s 
algorithm and discusses its implementation. In Section 4 we use an approach due 
to Johnson and Burrus [6] to reduce the number of additions required by this 
algorithm. It is also shown that the modified algorithm can be implemented essen- 
tially in-place. Section 5 introduces another nesting strategy which trades a further 
reduction in the addition count for some extra multiplications and permits a 
straightforward self-sorting in-place implementation. At this juncture, we compare 
operation counts and show that the prime factor algorithm still requires the lowest 
number of additions amongst the algorithms so far considered. In Section 6 it is 
shown that, for certain values of the transform length, other algorithms do exist 
which require even fewer additions. Section 7 discusses some practical considera- 
tions in the choice of algorithms. Applications to multidimensional transforms are 
presented in Section 8, and finally Section 9 contains a brief summary. 

2. CONVENTIONAL AND PRIME FACTOR ALGORITHMS 

The discrete Fourier transform (DFT) is defined by 
N-l 

x, = 1 c,o$, OsnsN--1, 
k=O 

(1) 

where oN = exp( +2irt/N). (Either sign may be chosen in the definition of oN). 
Throughout this paper it will be assumed that both x, and ck are complex. To 
develop fast algorithms for Eq. (l), we rewrite the transform as 

x= w,c, (2) 

where W, is the DFT matrix of order N, with element (i, k) given by w’k where the 
rows and columns of W, are indexed from 0 to N- 1. Fast transform algorithms 
can be defined whenever N can be factorized as a product of smaller integers, 

N=N,N2 . ..Nk. 

Conventional Algorithms 

A unified derivation of the many variants of the Cooley-Tukey FFT algorithm 
was given in [lo], in terms of a factorization of the DFT matrix W,. For this 
algorithm, there is no restriction on the factors Ni. It was shown for example that 
if N=N,Nz, then 

wN = ( WN2 x INI) p$D% wN, x rNl)y (3) 

where PC: is a permutation matrix, D N, Nl is a diagonal matrix of “twiddle factors,” 
and x denotes Kronecker (tensor product) multiplication. 
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The FFT is fast for two reasons. First, the transform of length N is decomposed 
into sets of shorter transforms of length Ni. Second, fast “small-n” algorithms 
(“DFT modules”) are available for implementing the component transforms. A 
mixed-radix FFT code might, for example [lo], include such modules for 
Ni = 2, 3, 4, 5, and 6. Efficient algorithms for N, = 2, 3, 4 can easily be found by 
inspection. Efficient algorithms for Ni = 5, 6 were given in [lo], together with 
formulae for calculating the overall operation count for a transform of length N. 

Prime Factor Algorithms 

Several years before the publication of the Cooley-Tukey algorithm, Good [5] 
developed a factorization of the DFT matrix for the case where the factors Ni of N 
are mutually prime (having no common factors). Good’s factorization may be 
written as 

W,=Q-‘(WN,x WN2x . . . x WNk)P, (4) 

where P and Q are special permutation matrices. Combining Eqs. (2) and (4), the 
transform becomes 

x’ = ( w,, x w,, x . . . x W&” (5) 

where c’ = PC and x’ = Qx represent permutations of the input and output data. 
In this paper we will not be especially concerned with the details of these 

permutations, which have been discussed previously in [ 1, 141. It will suffice to 
make the following observations: 

(a) If the transform is followed by its inverse, with some intervening opera- 
tions in transform space which can use the coefficients in “scrambled” order, then 
the permutation x = Q-lx’ can be dispensed with. 

(b) By simple modifications to the component transform matrices W,,, and 
to the corresponding DFT modules, the permutation matrices P and Q can be 
made the same [l, 141. 

(c) In neither case is any explicit physical rearrangement of the data 
required; the permutation can be handled implicitly by the indexing logic. A simple 
and elegant indexing scheme, which achieves this and permits in-place implementa- 
tion, was presented in [14]. In case (b) above, the algorithm becomes self-sorting 
as well as in-place. 

In view of the foregoing remarks, we will rewrite Eq. (4) as 

Rv= w,,x W&X ... x WNk, (6) 

where WIN = Q W,P-’ is simply the DFT matrix with its rows and columns per- 
muted. The importance of Eq. (6) is that the original l-dimensional transform of 
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length N has been reduced to a k-dimensional N, x N, x . . x Nk transform, with 
no intervening “twiddle factors.” This can be carried out simply by performing a 
transform of length N, along each of the N/N, “rows” (the first dimension), then 
a transform of length N, along each of the N/N, “columns” (the second dimension), 
and so on. In the remainder of this paper, it will be very helpful to visualize the 
implementation of Kronecker (tensor) products of matrices in this geometrical way. 
(A similar viewpoint can be taken to explain the Cooley-Tukey family of 
algorithms; see de Boor [3] for a notable example). 

The prime factor algorithm (PFA) depends crucially on the factors Ni being 
mutually prime. With just the “small-n” algorithms as used in the conventional 
mixed-radix FFT, the range of possible values of N would be extremely restricted. 
We are thus driven to look for “small-n” algorithms for somewhat larger factors. 
For example, N = 144 can be factorized as N = 3 x 3 x 4 x 4 or N = 4 x 6 x 6 for the 
conventional FFT, but it must be factorized as N= 9 x 16 for the prime factor 
algorithm. Clearly we can build up the required algorithms from those for N, = 3 
and Nj= 4, using Eq. (3). This approach leads to DFT modules which seem 
(although there is no formal proof) to minimize the number of additions. It turns 
out, however, that we have a choice for some values of N,; Winograd [18] 
developed an alternative set of DFT modules which minimize the number of mufti- 
plications. (As we shall see in the next section, Winograd’s modules also have other 
important properties). Thus we can implement prime factor algorithms defined by 
Eq. (6) using either the “minimum-add” or “minimum-multiply” (Winograd) DFT 
modules as a basis. For the PFA and for Winograd’s algorithm as described in Sec- 
tion 3, modules are usually provided for the following set of factors: (2, 3, 4, 5, 7, 
8, 9, 16). The operation counts for the individual DFT modules are summarized in 
Table I. The minimum-add modules are detailed in [16], while the Winograd 
modules may be found for example in [S or IS]. Any of these modules could, of 
course, be used in the context of the conventional FFT. 

The overall operation count for the PFA may be computed as follows. Suppose 
N = N, N, ... N,, and let A(N,), M(N,) be respectively the number of real additions 

TABLE I 

Real Operation Counts for Small-n DFT Modules 

Minimum-add Winograd 
n Adds Mults Adds Mults 

2 4 0 4 0 
3 12 4 12 4 
4 16 0 16 0 
5 32 12 34 10 
I 60 32 72 16 
8 52 4 52 4 
9 80 28 88 20 

16 144 24 148 20 
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and multiplications for the DFT module of order Nj, as given in Table I for the 
chosen variant. Then the total operation count is given by 

A(N) = i tNIN,) A(Ni)v 

i=l 

k 

i=l 

3. THE WIN~CRAD FFT ALGORITHM (WFTA) 

Winograd’s algorithm [lS] depends on the following observation. Each of the 
“minimum-multiply” small-n DFT modules discussed in the previous section can be 
written in the form 

W, = B,M,A,, (7) 

where A,, B, are matrices whose non-zero entries are all f 1. Thus, multiplication 
by these matrices requires only additions and subtractions. M, is a diagonal matrix 
whose entries are all pure real or pure imaginary numbers. In general A, and B, 
may be rectangular; e.g., A, is an fi x n matrix, M, is fix fi, and B, is n x fi, with 
fi 2 n. However, in the algorithms given by Winograd, fi is at most n + 2. In the 
terminology of Johnson and Burrus [6], A, and B, are the “pre-weave” and 
“post-weave” matrices. An example for n = 5 is detailed in the Appendix. 

The key to Winograd’s algorithm is now the way the small-n DFT modules are 
combined. Using a factorization of the form (7) for each N,, substituting in the 
prime factor algorithm defined by Eq. (6) and using the algebra of Kronecker 
products, we obtain 

I&,= BNMNAN, (8) 

where 

B, = B,, x BN2 x . . . x BNk, (9) 

M, = M,, x M,, x . ’ . x M,, (10) 

A,=A,,xA,,x ‘.. xANk. (11) 

Note that Eq. (8) still has the same form as Eq. (7). The non-zero entries of the 
pre-weave and post-weave matrices A, and B,,, are still all + 1, while M, is still a 
diagonal matrix whose entries are all pure real or pure imaginary numbers. 

From the expressions given in Eqs. (9) and (11) above, we see that multiplication 
by A, is equivalent to applying, for each i (15 i 5 k), the pre-weave part of the 
transform of length Ni along the appropriate “row” or “column” of a k-dimensional 
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array, and similarly for multiplication by the post-weave matrix B,. These operations 
require only additions and subtractions. Multiplication by M, is simply pointwise 
multiplication of every element in the array by a real or imaginary constant. Thus 
all the multiplications required in the algorithm have been nested together, and 
each takes just two real multiplications. 

The difficulty with this algorithm, which complicates the implementation and in 
particular precludes in-place working, is the fact that the pre-weave and post-weave 
matrices are in general rectangular. Thus the k-dimensional array tends to expand 
along each dimension in turn as the pre-weave operations are applied, and similarly 
to contract during the post-weave phase. 

One result is that the number of additions required is a function of the order in 
which the factors are used, in contrast to the conventional and prime factor algo- 
rithms for which the operation count is independent of the order of the factors. 

To demonstrate this, we first summarize in Table II the number of real pre-weave 
additions A(n) and post-weave additions B(n) for each value of n. Also shown is the 
order a(n) of M,, and the number m(n) of entries of M, which are &- 1 or + i, 
leading to “trivial” multiplications. The counts are taken from the Winograd 
modules as given by Nussbaumer [8]. 

Let N= N, N2 . . . Nk. Regardless of the order in which the factors are used, all 
the multiplications are nested together in the multiplication by M,, and the 
number of non-trivial real multiplications is given by 

M(N)=2 fi Aif( fj m(NJ, 
i= 1 i= I 

Now suppose the factors are used in the order N,, N,, . . . . Nk in the pre-weave 
phase and in the reverse order during the post-weave phase. Let fli be the size of 
the data array after i substages of the pre-weave phase; thus, Ni may be found 
recursively by setting 

ii$=N, Ni= nip ,(m(Ni)/Ni) for lgiik. (12) 

TABLE II 

Values of A(n), B(n), iii(n), and m(n) for Winograd’s DFT Modules 

n A(n) B(n) M(n) m(n) 

2 4 0 2 2 
3 6 6 3 1 
4 12 4 4 4 
5 16 18 6 1 
I 34 38 9 1 
8 32 20 8 6 
9 40 48 11 1 

16 80 68 18 8 
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TABLE III 

Operation Counts for Complex Transform, N = 720 

Algorithm Real Adds Real Mults Total 

Conventional, N = 2“ 32 ‘5 20642 12676 33318 
Conventional, N = 32 42 ‘5 19922 11236 31158 
Conventional, N = 4 ‘5 . 62 19322 10036 29358 
PFA, min-add modules 17488 5048 22536 
PFA, Winograd modules 18596 3940 22536 
Winograd, best ordering 21312 2360 23672 
Winograd, worst ordering 23112 2360 25472 

Then the total number real additions is given by 

A(N) = 5 (lv- ,/N,)(A(N,) + B(N,)). 

To minimize the number of additions, the factors Ni should be used in a par- 
ticular order. It is quite easy to show that Ni = 2, 3,4,8 can be used in any order 
as “outer” factors (i.e., used before other factors in the pre-weave phase, and after 
other factors in the post-weave phase); the modules for these factors have square 
pre-weave and post-weave matrices, so they do not change the size of the array. The 
remaining factors should be used in the order 16 (outermost), 9, 7, 5 (innermost), 
in a symmetric manner for the pre-weave and post-weave phases. 

We conclude this section with a comparison of operation counts for a complex 
transform of length N= 720, as summarized in Table III. For the conventional 
algorithm, operation counts were computed as in [lo] for three different factoriza- 
tions, showing the improvements obtained by first grouping the factors of 2 in pairs 
(radix-4 vs. radix-2) and then including a radix-6 module in the algorithm. For the 
PFA and Winograd algorithms, the factorization is always N= 5 x 9 x 16. The PFA 
based on minimum-add modules requires the fewest additions of all the algorithms 
in Table III, but the PFA based on Winograd DFT modules requires significantly 
fewer multiplications. These two versions of the PFA require the same total number 
of operations. Winograd’s (nested) algorithm requires by far the smallest number of 
multiplications, but even with the factors optimally ordered it requires more addi- 
tions than any of the other algorithms and more operations in total than the PFA. 

4. SPLIT NESTING 

Johnson and Burrus [6] pointed out that the pre-weave and post-weave matrices 
A, and B, in Eq. (7) may be further factorized; thus each of the Winograd small-n 
DFT modules may be written in the form 

W,,= F,,E,M,D,C, (13) 
with the pre-weave and post-weave phases each split into two parts. Inserting the 



NESTED PRIME FACTOR FFT ALGORITHMS 255 

factorization (13) into Eq. (6) and using the algebra of Kronecker products 
generates a large class of DFT algorithms which includes the PFA and the fully 
nested Winograd algorithm as special cases. To see how large this class is, suppose 
N = N, N,N,N,, where the Ni are mutually prime, and consider a given factoriza- 
tion of the form (13) for each of the four DFT modules involved. Using the formula 
given in [6], the number of distinct DFT algorithms which can be generated in this 
way is 20!/(5!)4 w 1.17 x 10”. A dynamic programming procedure is presented in 
[6] which finds the best algorithm within this class, with respect to a user-specified 
cost function which may, for example, depend on the number of additions, multi- 
plications, data transfers, and subroutine calls. A simple but illuminating example, 
for N= 35 = 5 x 7, is presented in [6] to illustrate possible trade-offs between 
additions and multiplications. The results are reproduced in Table IV. 

Thus the new algorithm generated by the procedure of Johnson and Burrus 
requires rhe same number of multiplications as the WFTA, while reducing the 
number of additions close to the level of the PFA and requiring fewer operations 
in total than either. This is a very interesting result; if the cost of additions and mul- 
tiplications is comparable, then the new algorithm is better than either the PFA or 
the WFTA. Even in the case where the multiplications can be overlapped with the 
additions and are thus essentially free, the new algorithm is a close rival to the 
PFA. 

Using the basic idea proposed by Johnson and Burrus in [6], it turns out to be 
straightforward to develop a general procedure for splitting and recombining the 
Winograd DFT modules in such a way as to maintain the multiplication count of 
the WFTA while reducing the addition count close to that of the PFA. 

First, the way in which the factorized modules are recombined will be analogous 
to that used in Eqs. (8)-( 11). Suppose N = N, N, . . . N,, and that a factorization of 
the form (13) is given for each N;. Substituting in the prime factor algorithm 
defined by Eq. (6) and using the algebra of Kronecker products, we obtain 

I&= FNE,M,D,CN, (14) 
where 

F, = F,, x FNz x . . . x F,, 

E, = E,, x E,, x . . . x ENk, 

M, = M,, x M,, x . x MNk, 

D, = D,, x D,, x . . . x DNk, 

c, = c,, x c,, x ’ ’ ’ x c,. 

Second, the factorizations A,, = D,C, and B, = F,,E,, for the pre-weave and post- 
weave matrices, respectively, will be done in such a way that C, and F,, are square, 
while D, and E, contain as few operations as possible. Thus in Eq. (14), the first 
part of the pre-weave phase, represented by C,, will not increase the size of the 
original k-dimensional array. Expansion of the array will only occur during the 



256 CLIVE TEMPERTON 

TABLE IV 

Operation Counts for Complex Transform, N = 35 

Algorithm Real Adds Real Mults Total 

PFA, Winograd modules 598 150 148 
WFTA 666 106 112 
Johnson and Burrus 610 106 716 

second part of the pre-weave, and as few additions as possible will be performed on 
the expanded array. The splitting of the post-weave phase is analogous, with as 
many additions as possible being delayed until the last stage, represented by F,, by 
which time the array will have contracted back to its original size. 

The required factorizations A, = D,C, and B, = F,, E, are trivial in the cases 
n = 2, 3, 4, 8; since A,, and B, are already square, we simply set D, = E, = Z, (the 
identity matrix), C, = A, and F, = B,. Examination of the Winograd DFT modules 
as specified, for example, by Nussbaumer [8] shows that the factorization can be 
written in such a way that in the case n = 5, D, and E, respectively contain just one 
and two complex additions. In the cases n = 7, 9, 16 (for which fi = n + 2), multi- 
plications by D, and E, correspond respectively to 2 and 4 complex additions. The 
factorization for n = 5 is demonstrated in the Appendix. 

Thus, in general, multiplication by the 3 x n matrix A,, in Eq. (7) is equivalent to 
multiplying by an n x n matrix C,, followed by (3 -n) extra complex additions to 
produce the required vector of length 3. Similarly, multiplication by the n x fi matrix 
B, is equivalent to performing 2(fi - n) complex additions before multiplying by the 
n x n matrix F,,. Within each individual DFT module, the operation count is 
unchanged. However, when the modules are nested as in Eq. (14) there is a signifi- 
cant decrease in the addition count compared with the “fully nested” algorithm of 
Eq. (8). 

Table V summarizes, for each n, the number of real additions A,(n) in the algo- 
rithms for multiplications by C, and F, (the total is for the two matrices combined.) 
A,(n) is the corresponding total for multiplication by D, and E,. 

The overall operation count for the split nested algorithm is found as follows, for 
N= N,N2 ... Nk. First, the number of multiplications is exactly the same as for the 
WFTA. The number of real additions for the “non-expanding” parts of the 
pre-weave and post-weave stages is 

Al(N)= i (N/Ni)Al(Ni) 
i= 1 

and is clearly independent of the order in which the factors are used. Defining Ni 
as in Eq. (12), the number of real additions for the “expanding” parts is 

A,(N) = 5 (Nip 1lNi) AI 
i=l 
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TABLE V 

Values of A,(n) and A,(n) for Split Nested 
DFT Modules 

n A,(n) AAn) 

4 0 
12 0 
16 0 
28 6 
60 12 
52 0 
16 12 

136 12 

and it turns out that this sum too is independent of the order in which the factors 
are used. Hence for the split nested algorithm, the operation count does not depend 
on the order of the factors. 

Table VI summarizes, for N= 720, the operation counts for this “split nested” 
algorithm compared with those for the PFA based on Winograd’s DFT modules 
and for the fully nested WFTA. The multiplication count is the same as for the 
WFTA, while the addition count has been reduced to a level close to that for the 
PFA, and the total operation count is lower than that for either the WFTA or the 
PFA. The operation counts for the split nested algorithm are the same as those 
given by Nussbaumer [8, Chap. 5.4.31 though the derivation of the algorithm is 
quite different; the equivalence was pointed out by Johnson and Burrus [IS] for 
their N= 35 algorithm referred to earlier. 

As described above, the split nested algorithm still suffers from the same dis- 
advantage as Winograd’s fully nested algorithm, namely an expanding work array. 
This could in principle be avoided by considering the structure of the matrices in 
the factorization given by Eq. (14). Since C, and F,,, are square and simply repre- 
sent sequences of “row” or “column” operations on the k-dimensional array, multi- 
plication by these matrices can be done in-place. In addition, the matrix product 
E,M,D, is square and very sparse, with many of its rows having a non-zero entry 
only on the diagonal. In general, a row may have 2p non-zero entries where 

TABLE VI 

Operation Counts for Complex Transform, N = 720 

Algorithm Real adds Real mults Total 

WFTA 21312 2360 23612 
Split nested 19040 2360 21400 
PFA, Winograd modules 18596 3940 22536 
PFA, min-add modules 17488 5048 22536 
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0 5 p 5 k; if p > 0, then there will in fact be 2p - 1 other rows with non-zero entries 
in the same columns. From a geometrical viewpoint, E,M,D, operates on small 
disjoint “blocks” of the k-dimensional array. Each such block consists of 2p points 
which form the vertices of a p-dimensional “cuboid” within the array. If the multi- 
plication by E,,,M,D, is done block by block, then only 2k - 1 (complex) words 
of work space are required. Such an implementation could be programmed in a 
manner analogous to that for the “X”-stage of the real/half-complex prime factor 
algorithm described in [ 171. 

As an example of the usefulness of this device, consider the transform of length 
N= 5040 = 5 x 7 x 9 x 16. Using either the WFTA or a straightforward implementa- 
tion of the split nested algorithm, the data array expands to a length of W= 10692, 
more than twice the original size. Using the modified algorithm just described, the 
computation can be done using just the original array plus 15 complex words of 
work space. If the rotated forms of the DFT modules are used, then the algorithm 
becomes self-sorting as well as effectively in-place. 

5. PARTIAL NESTING 

In the previous section, the ideas of Johnson and Burrus [6] were used to 
develop an algorithm which required the same number of multiplications as the 
WFTA, while reducing the addition count. We will now show that similar ideas 
may be used to achieve further reductions in the number of additions, at the 
expense of some extra multiplications. However, the total operation count is 
reduced compared with split nesting, and the implementation is more straight- 
forward. 

As in the WFTA of Section 3, each of the small-n DFT modules will be written 
as the product of three factors: 

W,, = B;M”A:, (15) 

and the modules will be combined in exactly the same way as for the WFTA, 

ti,= BLM’NA’N, (16) 

where 
B:,=B’,,xB’,,x . . . xB’,,, (17) 

MN = M)), x M’,, x . . . x iv&, (18) 

A:,=A’,,xA’,,x ..’ xA’,,. (19) 

The difference from the WFTA lies in the factorization (15). The non-zero entries 
of Al are all f 1, but this time the matrix is square (n x n) rather than rectangular. 
M:, is also (n x n) and diagonal with pure real or pure imaginary entries. Finally, 
Bk is square (n x n) and is allowed to have (pure real) non-zero entries other than 
* I. 
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For n = 2, 3,4,8 the Winograd factorization (7) is already in this form. The 
necessary modifications to the Winograd algorithm for n = 5 are detailed in the 
Appendix, where the modified version is shown to be closely related to the mini- 
mum-add algorithm for n = 5. Inspection of the Winograd modules for n = 7,9, 16 
shows that similar modifications can be made in each case. 

The algorithm defined by Eqs. (16k(19) can easily be implemented in-place, 
since the pre-weave and post-weave matrices Ah and Bh are square and represent 
sequences of “row” or “column” operations on a k-dimensional array, while MN is 
diagonal and simply represents pointwise multiplication of the array by a field of 
predetermined constants. The size of the k-dimensional array is constant 
throughout the algorithm just as in the PFA, but most of the multiplications are 
nested as in the WFTA. 

To determine the operation count for this “partially nested” algorithm, we specify 
for each DFT module the number of real additions A(n), the number mO(n) of “tri- 
vial” ( + 1, + i) diagonal entries in M:,, and the number p(n) of real multiplications 
required in the algorithm for multiplying by BL. This information is summarized in 
Table VII. 

If N= N, N, . . . Nk, then the total number of real additions is given by 

A(N)= i (N/N,)4N;) 
r=l 

while the total number of real multiplications is given by 

M(N)=2N-2 fi &NJ+ i (N/N,)p(Ni). 
i= 1 i=l 

Some examples are included in Table VIII, for various values of N. In each case 
the number of additions lies between the counts for the two forms of the PFA. The 
number of multiplications is greater than for the WFTA or split nesting, but less 

TABLE VII 

Values of A(n), q(n), and p(n) for the DFT Modules 
Used in the “Partially Nested” Algorithm 

n A(n) m,(n) An) 

4 2 0 
12 I 0 
16 4 0 
32 I 4 
68 I 8 
52 6 0 
84 I 8 

I44 8 8 
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TABLE VIII 

Real Operation Counts for Complex Transforms of Length N 

Adds Mults Total 

N=144 
WFTA 
Split nested 
PFA (min-mult) 
Partially nested 
PFA (min-add) 

N=720 
WFTA 
Split nested 
PFA (min-mult) 
Partially nested 
PFA (min-add) 

N= 1008 
WFTA 
Split nested 

PFA (min-mult) 
Partially nested 
PFA (min-add) 

N=5040 
WFTA 
Split nested 
PFA (min-mult) 
Partially nested 
PFA (min-add) 

2916 380 3296 
2764 380 3144 
2740 500 3240 
2640 472 3112 
2576 664 3240 

21312 
19040 
18596 
17808 
17488 

34668 3548 38216 
30364 3548 33912 
29548 5804 35352 
28272 4552 32824 
26672 9256 35928 

233928 21368 255296 
190736 21368 212104 
182012 39100 221112 
173616 26856 200472 
165,616 58376 223992 

2360 
2360 
3940 

5048 

- 

23672 
21400 
22536 
20808 
22536 

than for either form of the PFA. The total number of operations is lower than for 
any of the other algorithms. Partial nesting might therefore be attractive for 
machines on which additions and multiplications contribute equally to the trans- 
form cost. 

6. FURTHER REDUCTIONS IN THE ADDITION COUNT 

In the preceding sections, we have explored several FFT algorithms which dis- 
play various trade-offs between additions and multiplications. The prime factor 
algorithm (PFA) based on the “minimum-add” DFT modules requires the fewest 
additions, but even for this algorithm the number of additions is several times the 
number of multiplications. On computers which can overlap the additions and the 
multiplications, a further reduction in the addition count would be profitable even 
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at the expense of extra multiplications. It is thus natural to ask whether algorithms 
exist which require fewer additions than the PFA based on minimum-add DFT 
modules. 

For certain values of N such algorithms do exist, and in this section we sketch 
some possibilities. Consider for example N= 144. The PFA in this case, following 
Eq. (6), is based on the decomposition 

lq4‘$ = w, x w,,. (20) 

Alternatively we could have factorized 144 as 12 x 12 and used the “conventional” 
decomposition, following Eq. (3): 

w,,, = (WI2 x Z12) f%m WI2 x Z,,). (21) 

Equation (21) splits the transform into a sequence of transforms of length 12, each 
of which can be computed as a 3 x 4 transform via the PFA. The diagonal matrix 
0:: contains the “twiddle factors” resulting from the conventional factorization. 
Allowing special treatment of the twiddle factors of the form exp(ie), where 8 is an 
integer multiple of n/4, the operation count for the algorithm defined by Eq. (21) 
is 2536 real additions, 832 real multiplications. Comparison with Table VIII shows 
that a small saving in the number of additions has been achieved. 

Another possibility is to start from Eq. (20), but instead of using the minimum- 
add DFT modules of length 9 and 16 we further decompose W, and W,, via a 
conventional factorization to yield 

@I,,= [(W,xZ,)P~D:(W,xZ,)lx C(W,xZ,)P~D~(W,xZ,)l. (22) 

The algebra of Kronecker products can then be used to convert Eq. (22) to the 
form 

IT,,, = (w, x I, x w, x Z,)(P: x Pj)(D: x D:)( W, x 1, x W, x Zd (23) 

In Eq. (23) we have succeeded in nesting the twiddle factors which were implicitly 
contained within the DFT modules of length 9 and 16, just as in the multi- 
dimensional FFT algorithm described in [lo]. Again allowing special treatment of 
twiddle factors corresponding to angles which are multiples of n/4, the algorithm 
defined by Eq. (23) requires 2512 real additions and 760 real multiplications. Com- 
pared with that defined by Eq. (20), we have saved 64 additions at the cost of 96 
extra multiplications. This example shows that additions can be nested-provided 
that they are embedded in complex multiplications. 

This algorithm for N= 144 can be linked via the PFA with the DFT modules of 
length 5 and 7, to generate algorithms for the other values of N shown in 
Table VIII. However, it is evident from the operation counts for N= 144 that the 
savings over the basic PFA are hardly worthwhile, especially in view of the 
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increased complexity in program structure and indexing. Although we have shown 
that the PFA does not always attain the minimum possible number of additions, 
it remains an open question whether a significant reduction can be achieved. 

7. PRACTICAL CONSIDERATIONS 

Sections 2-5 described several alternative algorithms for computing FFT’s, all 
based on the factorization of the transform length N into mutually prime factors. 
The fully nested Winograd algorithm (WFTA) and the split nested algorithm 
require the fewest multiplications. The “partially nested” algorithm requires the 
smallest total number of operations, while the PFA based on minimum-add DFT 
modules requires the fewest additions. 

In practice there are other important considerations involved in choosing an 
algorithm. On many computers, from the smallest up to the Cray-1 and beyond, 
the number of memory references may determine the running time of an algorithm. 
In the case of the algorithms described here, the number of memory references is 
closely related to the number of passes required through the data. If N has k 
mutually prime factors, then the prime factor algorithm (in either version) requires 
just k passes, one for each factor. Winograd’s fully nested algorithm requires 2k 
passes, a “pre-weave” stage and a “post-weave” stage for each factor; this was 
pointed out in [ 111 as being a disadvantage on the Cray-1. The partially nested 
algorithm of Section 5 also requires 2k passes, while the split nested algorithm of 
Section 4 requires 4k passes (though some of these may be null, depending on the 
factors). From the point of view of memory references (or data transfers), the PFA 
has a clear advantage over the other algorithms. 

If in-place capability is important, then the PFA again has the advantage [14], 
shared with the partially nested algorithm. The split nested algorithm can also be 
used in-place (Section 4) at the expense of more complicated code. The fully nested 
WFTA cannot be implemented in-place because of the varying size of the array 
occupied by the data. All of these algorithms can be made self-sorting by using 
the “rotations” described in [ 141 for the underlying prime factor algorithm 
decomposition. 

Another advantage of the PFA is that it does not need a precalculated table of 
multiplier constants. The partially nested algorithm requires such a table (of length 
N), as do the WFTA and the split nested algorithm (of length N > N, where R is 
the maximum size of the expanded array). 

Finally, the PFA seems to have an advantage over the other algorithms in terms 
of code simplicity. As demonstrated in [ 141, the PFA code is very straightforward. 

8. MULTI DIMENSIONAL TRANSFORMS 

So far in this paper we have been concerned only with l-dimensional transforms. 
If the transform length N is the product of k mutually prime factors, 
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N = N, N,...N,, then the basis of the prime factor algorithm (and all other algo- 
rithms derived from it) is the conversion of the l-dimensional transform to a 
k-dimensional transform, as in Eq. (4). Now, the matrix for a 2-dimensional N x N 
transform can be written immediately as a tensor product: 

W (NxN)= wNx wN. (24) 

Using Eq. (4) Eq. (24) becomes 

W,N.N,=(Q-‘XQ-‘)(WN,X “‘X WNkx WN,X ... X W,)(PxP) (25) 

which (apart from the permutations) is in the form of a 2k-dimensional transform. 
The extension to three dimensions (N x N x N) is immediate. Moreover, any of the 
nesting strategies of Sections 335 can be used in constructing an algorithm for such 
a transform. 

In Table IX we list the operation counts for a 3-dimensional transform of size 
720 x 720 x 720. Transforms of this size are of practical interest and have indeed 
already been achieved [4]. The PFA based on minimum-add DFT modules again 
requires the smallest number of additions. The partly nested algorithm saves over 
half the multiplications compared with the PFA and again requires the lowest total 
number of operations. The most striking result is for the fully nested Winograd 
algorithm, which now requires more than twice as many additions as the PFA. 
Moreover, the data array expands to almost 4: times its initial size, and this penalty 
has now made the full nesting strategy counterproductive for the multiplication 
count: the WFTA (and similarly the split nested algorithm) actually requires more 
multiplications than the partially nested algorithm. 

The data for a complex 720 x 720 x 720 3-dimensional transform would occupy 
about three-quarters of the central memory of a gigaword machine. The prime 
factor algorithm could easily be implemented in its self-sorting in-place form, is the 
only one of the algorithms considered here which would not require a precomputed 
multiplier table at least as large as the data itself, and would be the fastest 
algorithm on any machine where the multiplications can be overlapped with the 
additions. 

TABLE IX 

Real Operation Counts for 3-Dimensional Complex Transform, 720 x 720 x 720 

Algorithm Adds Milks Total 

Fully nested WFTA ,55 032 874 848 3 353 352 320 58 386 227 168 
Split nested 33 064 578 432 3 353 352 320 36 417 930 752 
PFA, Winograd modules 28 920 499 200 6 127 488 000 35 047 987 200 
Partially nested 27 695 001 600 3 197 490 176 30 892 491 776 
PFA, min-add modules 27 197 337 600 7 850 649 600 35 047 987 200 
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9. SUMMARY 

In this paper we have explored several nesting strategies which can be applied to 
the prime factor FFT algorithm. Winograd’s technique [18] requires the lowest 
number of multiplications, but this is achieved at the expense of more additions and 
extra work space. Using a modification due to Johnson and Burrus [6], some of 
these extra additions can be eliminated and the algorithm can be implemented in- 
place. A “partial” nesting strategy is proposed to reduce the addition count further; 
this algorithm can be performed in-place and requires the smallest total number of 
operations. For large multi-dimensional transforms, Winograd’s algorithm is no 
longer optimal for the number of multiplications, while the addition count and the 
work space required both increase sharply. 

In the context of large-scale scientific computing on machines where the multi- 
plications can be overlapped with the additions, it is clear that the prime factor 
algorithm (PFA) without nesting remains the best algorithm; fortunately it is also 
the simplest to implement. In most other contexts the relative simplicity of the PFA 
will also act in its favour; but if the number of multiplications or the total number 
of operations is the overriding consideration, then the “split nested” or “partially 
nested” variants of the algorithm might provide useful alternative formulations. 

APPENDIX 

Here we set out the details of the matrix factorizations 
algorithms, for the DFT module of length 5. Suppose 
complex transform 

xi = c z,olk, 05 jS4, 
k=O 

where w = exp(2rci/5). The “multiplier constants” used in 
as follows, where 8 = 2n/5: 

used in the various nested 
we wish to compute the 

(26) 

Winograd’s algorithm are 

cl = :(cos 8 + cos 28) - 1= - 1.25 

c2 = ;(COS e - cos 28) = &4 

c3 = sin e - sin 28 

cd = sin 8 + sin 28 

c5 = sin 8. 

The Winograd algorithm for calculating the transform (26) may be found in 
Winograd [18] or Nussbaumer [8] (though in the latter case the algorithm 
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requires slight modification to change the sign of the exponent of CO). With some 
convenient changes in notation, the algorithm is as follows, where the computation 
has been split into five stages for future reference: 

(4 24, =z* +z,; u,=z,+z,, t,=z,-z‘$, t4=z2-zj; t,=u,+u,; 
t,=u,-242; t,=z,+f,; 

(b) t, = t, - t,; 

(cl m,=t,;m,=c,*t,;m,=c,*t,;m,=ic,*t,;m,=ic,*t,;m,=ic,*t,; 
(d) s,=m,+m,; s,=m,-mm,; 

03 s,=m~+m,;s2=s,+m2;s,=s,-m2;x,=m~;x,=s2+s,;x,=~~+~~; 
x,=s,-sss; x4=&7-s3. 

Stages (a) and (b) together, requiring only additions, form the “pre-weave” part 
of the algorithm; similarly, stages (d) and (e) together form the “post-weave” part. 
For purposes of actually coding this algorithm, it is the above description which is 
needed; but for deriving the algorithm for composite N, a matrix description, as in 
Eqs. (8)-( 1 1 ), is more helpful. If we define the vectors 

x = (x,7 Xl, x2, X3, x41= 

Z=(Zo,Z,,Z2,Z3,Z4)T 

then the transform (26) becomes 

x= w,z. 

The algorithm above then becomes equivalent to a factorization of the matrix W,, 
as in Eq. (7): 

W, = B,M,A,. 

Defining the temporary vectors 

t = (hl? t,, t2, t,, t,, aT 

m = h, ml, m2, m3, m4, MT 

the algorithm becomes 

t=A,z; m=M,t; x = B,m. 

Following through the operations in the algorithmic description, 
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A,= 

M,=diag(l, cl, c2, ic,, ic,, ic,), 

B,= 

-1 1 1 1 1 
0 1 1 1 1 
0 1 -1 -1 1 
0 1 0 o-1 
0 0 l-l 0 

-0 1 -1 1 -1 

-1 0 0 0 0 0 
1 1 1 0 1 1 
1 1 -1 -1 0 1 
1 l-l 1 0 -1 

1 1 1 0 -1 -1 1 
This completes the matrix specification of Winograd’s algorithm as used in 
Section 3. 

For the split nesting algorithm of Section 4, we use a factorization of the form 

W, = F,E,M,D5C5 

such that C5 and F, are square, while E5 and D, contain as few additions as 
possible. It is easily seen that at the end of stage (a) above, we have computed the 
5-component vector (to, t,, t,, f3, t,)= and that the original vector z is no longer 
needed, while only one further complex addition is required to compute t, and 
complete the vector t. Hence C, is obtained by deleting the last row of A,, and 
corresponds to stage (a). D, corresponds to stage (b) and is defined by I.5 D,= [ --------_- 1 , 0 0 0 1 -1 

where I, is the identity matrix of order 5. 
In the post-weave stage, it is again easily seen that after stage (d), only the 

5-component vector (m,, m 1, m,, s3, s~)~ is needed for the remainder of the com- 
putation. Our “design criteria” are thus satisfied by defining 

[ 
1 0 0 0 0 0 
0 1 0 0 0 0 

E,= 0 0 1 0 0 0 

000011 
0 0 o-1 0 1 1 
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which corresponds to stage (d), leaving 

F, = 

corresponding to stage (e). 

0 0 
1 1 
1 -1 
1 -1 

1 1 

0 
1 
0 
0 

-1 

0 

0 

1 2 
-1 

0 1 
For the partial nesting algorithm of Section 5, we use a factorization of the form 

W, = B;M;A;, (27) 

where all the matrices are square. To obtain this form, the algorithm requires cer- 
tain modifications; we first express s3 and s5 (from stage (d)) in terms of quantities 
computed in stage (a). Thus 

s3 = m5 + m4 = i(sin O(t, - t4) + (sin 8 + sin 28) t4} 

=i{sin8.t,+sin28.t4} 

while 

s5 = m5 - m3 = i(sin 0(t, - t4) - (sin 8 - sin 28) t3} 

= i{ sin 28. t, - sin 8. f4}. 

A modified algorithm is thus obtained by keeping stage (a), deleting stage (b), and 
replacing stage (c) by: 

(cl’ m,=t,;m,=c,*t,;m,=c,*t,, . rn; = i sin 8. t,; rn: = i sin 8. t4 
Stage (d) becomes: 

Cd)’ s,=m;+uml,; s,=ccm;-m&, 

where LX = sin 28/sin 8, and stage (e) remains the same. The resulting algorithm, 
derived above from Winograd’s formulation, saves one complex addition at the cost 
of one more (real x complex) multiplication. Thus the operation count is the same 
as for the “minimum-add” algorithm for n = 5, and indeed it could have been 
derived easily from the “triadic” form of the minimum-add algorithm presented in 
[lo] as being suitable for implementation on the Cyber 205. 

To complete the factorization of Eq. (27), A; corresponds to stage (a) and is the 
same as C, of the split nested algorithm, 
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and 

B; = 
I 0 

i I 

----- 9 
I1 ci 

I a -1 

where F, was defined earlier for the split nested algorithm. 
In the above, the details for n = 5 have been explicitly presented in order to 

demonstrate the principles involved, and to illustrate the relationship between the 
small-n DFT algorithms and the corresponding matrix representations used in 
deriving the various algorithms for composite IV. A similar exercise could be carried 
out for the other values of n, but for the purposes of this paper it is (fortunately) 
not necessary to find the explicit forms of all the matrices involved; all the informa- 
tion needed can be extracted fairly easily by inspecting the computational structures 
of the DFT-modules in algorithmic form. 
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